1 Improper Integrals

1. **TRUE** False It is possible for the integral $\int_1^\infty f(x)$ to be neither a finite number nor infinity.

Solution: We showed that the integral $\int_0^\infty \cos(x) dx$ doesn't exist at all in class.

2. True **FALSE** Since 3 > 1, the integral $\int_0^\infty \frac{1}{x^3} dx$ converges.

Solution: We only showed the result where the bottom limit is 1. This integral actually diverges.

3. True **FALSE** If $\lim_{x\to\infty} f(x) = 0$, then $\int_1^\infty f(x) dx$ converges.

Solution: Counter example is $f(x) = \frac{1}{x}$.

4. Calculate $\int_3^\infty \frac{1}{x \ln(x)}$.

Solution: We have that

$$\int_{3}^{\infty} \frac{1}{x \ln x} = \lim_{t \to \infty} \int_{3}^{t} \frac{1}{x \ln x} = \lim_{t \to \infty} \ln(\ln x) \Big|_{3}^{t}$$
$$= \lim_{t \to \infty} [\ln(\ln(\infty)) - \ln(\ln 3)] = \infty.$$

5. Calculate $\int_{1}^{\infty} e^{-5x} dx$.

Solution: We have that

$$\int_{1}^{\infty} e^{-5x} dx = \lim_{t \to \infty} \int_{1}^{t} e^{-5x} dx = \lim_{t \to \infty} \frac{e^{-5x}}{-5} \Big|_{1}^{t}$$
$$= \lim_{t \to \infty} \left[\frac{e^{-5t}}{-5} + \frac{e^{-5 \cdot 1}}{5} \right] = \frac{e^{-5}}{5}.$$

6. Calculate $\int_{1}^{\infty} \frac{x}{\sqrt{x^2 + 1}} dx$.

Solution: We have that

$$\int_{1}^{\infty} \frac{x}{\sqrt{x^2 + 1}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{x}{\sqrt{x^2 + 1}} dx = \lim_{t \to \infty} \sqrt{x^2 + 1} \Big|_{1}^{t}$$
$$= \lim_{t \to \infty} \left[\sqrt{t^2 + 1} - \sqrt{2} \right] = \infty.$$

7. Calculate $\int_0^\infty \frac{1}{1+x^2} dx$.

Solution: We have that

$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{t \to \infty} \int_0^t \frac{1}{1+x^2} dx = \lim_{t \to \infty} \arctan(x)_0^t = \lim_{t \to \infty} \arctan(t) = \frac{\pi}{2}.$$

2 Convergence

8. True **FALSE** If a < b then ac < bc.

Solution: We have that 1 < 2 but $-1 \nleq -2$.

9. True **FALSE** If a < b, then $\frac{1}{a} > \frac{1}{b}$.

Solution: Take -1 < 2 but $-1 \not> \frac{1}{2}$.

10. True **FALSE** If $f \leq g$ and $\int_{1}^{\infty} g(x)dx$ converges, then $\int_{1}^{\infty} f(x)dx$ converges.

Solution: The integral $\int_{1}^{\infty} f(x)dx$ could diverge to $-\infty$.

11. True **FALSE** If we can find a function g such that $0 \le f \le g$, then $\int_{1}^{\infty} f(x)dx$ converges.

Solution: In order to say the integral of f converges, we need to show that the integral of g converges as well.

12. Does $\int_0^\infty \frac{\arctan^2(x)}{\sqrt{1+x^4}} dx$ converge?

Solution: First we know that $|\arctan(x)| \leq \frac{\pi}{2}$ and so $\arctan^2(x) \leq \frac{\pi^2}{4}$. Also, we know that $1 + x^4 \geq x^4$ and so $\sqrt{1 + x^4} \geq \sqrt{x^4} = x^2$ and $\frac{1}{\sqrt{1 + x^4}} \leq \frac{1}{x^2}$. Thus

$$0 \le \int_{1}^{\infty} \frac{\arctan^{2}(x)}{\sqrt{1+x^{4}}} dx \le \int_{1}^{\infty} \frac{\pi^{2}/4}{x^{2}} dx = \frac{\pi^{2}}{4}.$$

So this integral converges.

Then for the remaining part, we know that $1+x^4 \geq 1$ and so $\sqrt{1+x^4} \geq 1$ and $\frac{1}{\sqrt{1+x^4}} \leq 1$ and so

$$\int_0^1 \frac{\arctan^2(x)}{\sqrt{1+x^4}} dx \le \int_0^1 \frac{\pi^2/4}{1} dx = \frac{\pi^2}{4}.$$

Therefore

$$0 \le \int_0^\infty \frac{\arctan^2(x)}{\sqrt{1+x^4}} dx \le \frac{\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{2}.$$

This integral converges.

13. Does $\int_3^\infty \frac{1}{\sqrt{x} \ln(x)}$ converge?

Solution: We know that for $x \geq 3$ that $x \geq \sqrt{x}$ and so $x \ln(x) \geq \sqrt{x} \ln(x)$ so $\frac{1}{x \ln(x)} \leq \frac{1}{\sqrt{x} \ln(x)}$ so

$$\int_{3}^{\infty} \frac{1}{\sqrt{x} \ln(x)} \ge \int_{3}^{\infty} \frac{1}{x \ln(x)} dx = \infty.$$

So this integral diverges.

14. Does $\int_{1}^{\infty} e^{-5x\sqrt{x}} dx$ converge?

Solution: For $x \ge 1$, we know that $x\sqrt{x} \ge x$ so $-x\sqrt{x} \le -x$ and so $e^{-5x\sqrt{x}} \le e^{-5x}$ and so

$$\int_{1}^{\infty} e^{-5x\sqrt{x}} dx \le \int_{1}^{\infty} e^{-5x} dx = \frac{e^{-5}}{5}.$$

So this integral converges.

15. Does $\int_1^\infty \frac{x}{\sqrt{x^2+1}-e^{-x}} dx$ converge?

Solution: We have that $\sqrt{x^2+1}-e^{-x} \le \sqrt{x^2+1}$ so $\frac{x}{\sqrt{x^2+1}-e^{-x}} \ge \frac{x}{\sqrt{x^2+1}}$ and so

$$\int_1^\infty \frac{x}{\sqrt{x^2+1}-e^{-x}}dx \geq \int_1^\infty \frac{x}{\sqrt{x^2+1}}dx = \infty,$$

so this integral diverges.

16. Does $\int_0^\infty \frac{1}{(1+x^2)^2} dx$ converge?

Solution: We know that $(1+x^2) \ge 1$ and so $(1+x^2)^2 \ge (1+x^2)$ so $\frac{1}{(1+x^2)^2} \le \frac{1}{1+x^2}$ so

$$\int_0^\infty \frac{1}{(1+x^2)^2} dx \le \int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}.$$

So this integral converges.

17. Does $\int_{1}^{\infty} \sqrt{x}e^{-2x}$ converge?

Solution: We have that $\sqrt{x} \le x$ for $x \ge 1$ and so $\sqrt{x}e^{-2x} \le xe^{-2x}$ and so

$$\int_{1}^{\infty} \sqrt{x}e^{-2x} \le \int_{1}^{\infty} xe^{-2x} = \frac{e^{-2}}{2} + \frac{e^{-2}}{4},$$

so the integral converges.